Metformin-treated cancer cells modulate macrophage polarization through AMPK-NF-κB signaling

نویسندگان

  • Chi-Fu Chiang
  • Ting-Ting Chao
  • Yu-Fu Su
  • Chia-Chen Hsu
  • Chu-Yen Chien
  • Kuo-Chou Chiu
  • Shine-Gwo Shiah
  • Chien-Hsing Lee
  • Shyun-Yeu Liu
  • Yi-Shing Shieh
چکیده

Accumulating evidence is indicating metformin to possess the potential ability in preventing tumor development and suppressing cancer growth. However, the exact mechanism of its antitumorigenic effects is still not clear. We found that metformin suppressed the ability of cancer to skew macrophage toward M2 phenotype. Metformin treated cancer cells increased macrophage expression of M1-related cytokines IL-12 and TNF-α and attenuated M2-related cytokines IL-8, IL-10, and TGF-β expression. Furthermore, metformin treated cancer cells displayed inhibited secretion of IL-4, IL-10 and IL-13; cytokines important for inducing M2 macrophages. Conversely, M1 inducing cytokine IFN-γ was upper-regulated in cancer cells. Additionally, through increasing AMPK and p65 phosphorylation, metformin treatment activated AMPK-NF-κB signaling of cancer cells that participate in regulating M1 and M2 inducing cytokines expression. Moreover, Compound C, an AMPK inhibitor, significantly increased IL-4, IL-10, and IL-13 expression while BAY-117082, an NF-κB inhibitor, decreased expression. In metformin-treated tumor tissue, the percentage of M2-like macrophages decreased while M1-like macrophages increased. These findings suggest that metformin activates cancer AMPK-NF-κB signaling, a pathway involved in regulating M1/M2 expression and inducing genes for macrophage polarization to anti-tumor phenotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controls of Nuclear Factor-Kappa B Signaling Activity by 5’-AMP-Activated Protein Kinase Activation With Examples in Human Bladder Cancer Cells

Generally, both lipopolysaccharide (LPS)- and hypoxia-induced nuclear factor kappa B (NF-κB) effects are alleviated through differential posttranslational modification of NF-κB phosphorylation after pretreatment with 5´-AMP-activated protein kinase (AMPK) activators such as 5´-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or the hypoglycemic agent metformin. We found that AICAR or metform...

متن کامل

Prognostic significance of AMPK activation and therapeutic effects of metformin in hepatocellular carcinoma.

PURPOSE The AMP-activated protein kinase (AMPK) serves as an energy sensor in eukaryotic cells and occupies a central role in linking metabolism and cancer development. However, the phosphorylation status of AMPK and its therapeutic value in human hepatocellular carcinoma (HCC) remain unclear. EXPERIMENTAL DESIGN The phosphorylation status of AMPK (Thr172) was determined by immunoblotting and...

متن کامل

Title: Prognostic significance of AMPK activation and therapeutic effects of metformin in hepatocellular carcinoma Authors and affiliations:

Purpose: The AMP-activated protein kinase (AMPK) serves as an energy sensor in eukaryotic cells and occupies a central role in linking metabolism and cancer development. However, the phosphorylation status of AMPK and its therapeutic value in human hepatocellular carcinoma (HCC) remain unclear. Experimental Design: The phosphorylation status of AMPK (Thr172) was determined by immunoblotting and...

متن کامل

VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells

Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...

متن کامل

Metformin Alleviates Lipopolysaccharide-induced Acute Lung Injury through Suppressing Toll-like Receptor 4 Signaling.

Signaling AMP-activated protein kinase (AMPK), an energy sensing enzyme, has been implicated in controlling inflammation. In this study we investigated whether activation of AMPK by metformin could protect the lung from lipopolysaccharide (LPS)-induced acute injury by inhibitingng TLR4 pathway. Male Wistar rats were randomly divided into 3 groups (n=6): control group received normal saline (0.5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017